首页> 外文OA文献 >Preparation of potentially porous, chiral organometallic materials through spontaneous resolution of pincer palladium conformers
【2h】

Preparation of potentially porous, chiral organometallic materials through spontaneous resolution of pincer palladium conformers

机译:通过自发钳夹钯构象异构体制备潜在的多孔手性有机金属材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding the mechanism by which advanced materials assemble is essential for the design of new materials with desired properties. Here, we report a method to form chiral, potentially porous materials through spontaneous resolution of conformers of a PCP pincer palladium complex ({2,6-bis[(di-t-butylphosphino)methyl]phenyl}palladium(II)halide). The crystallisation is controlled by weak hydrogen bonding giving rise to chiral qtz-nets and channel structures, as shown by 16 such crystal structures for X = Cl and Br with various solvents like pentane and bromobutane. The fourth ligand (in addition to the pincer ligand) on palladium plays a crucial role; the chloride and the bromide primarily form hexagonal crystals with large 1D channels, whereas the iodide (presumably due to its inferior hydrogen bonding capacity) forms monoclinic crystals without channels. The hexagonal channels are completely hydrophobic and filled with disordered solvent molecules. Upon heating, loss of the solvent occurs and the hexagonal crystals transform into other non-porous polymorphs. Also by introducing a strong acid, the crystallisation process can be directed to a different course, giving several different non-porous polymorphs. In conclusion, a number of rules can be formulated dictating the formation of hexagonal channel structures based on pincer palladium complexes. Such rules are important for a rational design of future self-assembling materials with applications in storage and molecular recognition.
机译:了解先进材料的组装机理对于设计具有所需特性的新材料至关重要。在这里,我们报告一种方法,通过自发拆分PCP夹心钯络合物({2,6-双[((二叔丁基膦基)甲基]苯基}钯(II)卤化物)的构象而形成手性,潜在的多孔材料。结晶是通过弱氢键控制的,从而产生手性的qtz网络和通道结构,如X = Cl和Br的16种此类晶体结构,用戊烷和溴丁烷等各种溶剂所显示。钯上的第四个配体(除钳形配体外)起着至关重要的作用。氯化物和溴化物主要形成具有较大一维通道的六边形晶体,而碘化物(可能是由于其氢键能力较弱)形成了没有通道的单斜晶体。六角形通道完全疏水,并充满了无序的溶剂分子。加热时,发生溶剂损失,六边形晶体转变为其他无孔多晶型物。同样通过引入强酸,可以将结晶过程引向不同的过程,从而得到几种不同的无孔多晶型物。总之,可以制定许多规则来规定基于钳合钯配合物的六边形通道结构的形成。这样的规则对于合理设计未来的自组装材料及其在存储和分子识别中的应用非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号